We will discuss topological K-theory, which is an invariant of topological spaces built in terms of vector bundles over a given space. It turns out that the resulting (contravariant) functor is homotopy invariant and satisfies an appropriate version of the excision theorem, and therefore gives rise to a ``generalised cohomology theory''. One of its key additional features is Bott periodicity.
After introducing topological K-theory, we will discuss some its classical applications: one can show that there are no real division algebras except the reals, thecomplex numbers, the quaternions and the octonions. The last talks will consider the question how many of linearly independent vector fields exist overa sphere of a given dimension and describe a strategy to determine the precise number.
Dieses Seminar beschäftigt sich mit einem Zugang zur Analysis, der Begriffe und Methoden verwendet, welche erst um die Mitte des 20. Jahrhunderts entwickelt wurden (im Wesentlichen geht es um das Konzept des Ultraprodukts, auch wenn unsere Quelle diesen Begriff anscheinend vermeidet). Das Ziel ist, den Begriff des \glqq Infinitesimals\grqq\ sinnvoll zu formalisieren und damit unter Anderem Begriffe wie Konvergenz, Stetigkeit und Differenzierbarkeit zu diskutieren.
We will discuss a number of foundational results in algebraic K-theory arising from the additivity theorem. This will include localisation sequences as well as devissage-type statements like the resolution theorem, the theorem of the heart and the Gillet-Waldhausen theorem. On the way, we will develop the basics of exact and (pre)stable infinity-categories, localisations of infinity-categories, weight structures and t-structures.
Die Vorlesung Lineare Algebra I wendet sich an Studierende im ersten Semester. Sie bildet zusammen mit der Vorlesung über Analysis die Grundlage für das Studium der Mathematik in den Studiengängen Bachelor Mathematik, Lehramt vertieft Mathematik, Bachelor Computational Science, Bachelor Physik und Bachelor Nanoscience. In der Vorlesung werden lineare Gleichungssysteme, Vektorräume, lineare Abbildungen, Matrizen, Determinanten, Eigenwerte, euklidische und unitäre Vektorräume und Normalformen für Endomorphismen behandelt.
Der Kurs dient der Vorbereitung auf die schriftliche Prüfung in Analysis im 1. Staatsexamen (Lehramt Gymnasium). Anhand früherer Examensaufgaben sollen die erforderlichen Kenntnisse aus der Funktionentheorie, der reellen Analysis und aus der Theorie der (gewöhnlichen) Differentialgleichungen wiederholt und die wesentlichen Techniken zum Lösen der Aufgaben eingeübt werden.
Der Examenskurs besteht im Wesentlichen daraus, alte Examensaufgaben zu besprechen. Im Laufe des Kurses werden außerdem Probeexamen angeboten, die bearbeitet und zur Korrektur abgegeben werden können. Es besteht keine Teilnahmepflicht und es können durch die Teilnahme keine ECTS-Punkte erworben werden.
Simple-homotopy theory asks whether any homotopy equivalence of finite CW-complexes can be expressed as a composition of some elementary geometric moves on the cells (called elementary expansions and elementary collapses). It turns out that the answer to this question is highly dependent on the fundamental group, and the non-simpleness of a homotopy equivalence can be detected by an element of the Whitehead group of the fundamental group, which is a certain K-theoretic invariant. This provides for example tools to distinguish lens spaces which are homotopy equivalent, but not homeomorphic.
In the later talks of the seminar, we will see how this theory comes to bear in understanding h-cobordisms between closed manifolds, ie cobordisms with the property that the inclusion of each boundary component is a homotopy equivalence. The s-cobordism theorem asserts that such an h-cobordism is isomorphic to a cylinder on one of the boundaries precisely if the inclusion of that boundary component is a simple homotopy equivalence.
This course covers some applications of algebraic K-theory (in particular the class group K_0) in geometric/algebraic topology. We will primarily cover the Wall finiteness obstruction which is a K-theoretic invariant designed to detect whether certain topological spaces are homotopy equivalent to finite CW-complexes. After discussing the fundamentals of the finiteness obstruction, we will develop some K-theoretic machinery to give a proof of West's theorem. As an application of West's theorem, we will see that every compact topological manifold has the homotopy type of a finite CW-complex.