Multisensory Perception of Self Motion: Psychophysics and Functional Neuroanatomy

Mark W. Greenlee

University of Regensburg

Optic flow, Eye Movements & Self-motion perception

Visual Processing

Ventral and dorsal streams

https://en.wikipedia.org/wiki/Two-streams_hypothesis

Region of interest Analysis

Contrast: expansion > static

Contrast: expansion > random

N = 10; p(corrected) < 0.05

Results: Region of interest analysis

Kovacs, Raabe & Greenlee. Cerebral Cortex 2008

GLM Results: vection vs object-motion

N = 10; p(corrected) < 0.05

Kovacs, Raabe, Greenlee Cerebral Cortex (2008)

Caloric Nystagmus, Vestibular-ocular reflex

- a) Telescope (50 x mag)
- b) Scale (deg. Visual angle)
- c) Lamp
- d) Support
- e) Bitebar
- f) Head mount
- g) Ruler
- h) Pendulum weight

Robert Bárány: Nobel Prize for Physiology or Medicine in1914

Robert Bárány (1876–1936)

Bárány, R. (1906). Über die vom Ohrlabyrinth ausgelöste Gegenrollung der Augen bei Normalhörenden, Ohrenkranken und Taubstummen. *European archives of otorhinolaryngology : official journal of the European Federation of Oto-Rhino-Laryngological Societies (EUFOS): affiliated with the German Society for Oto-Rhino-Laryngology - Head and Neck Surgery*, *68*(1-2), 1–30. doi:10.1007/BF01834666

NOBELPREISTRÄGER FÜR MEDIZIN

R 1970 R EI

Prior electrophysiology on self-motion perception

Somatosensory:

\bigcirc	Vestibular	A, arm	Hi, hip
+	Motor	Fe, feet	L, leg
	Auditory	F ₁₋₅ , finger 1–5	M, mouth
	Visual	H, hand	N, neck
		H, contralateral	P, pelvis
		H, bilateral	S, shoulder
		C, chest	WB, whole
		Fa, face	T, tail
			V, vertebra

body

Prior electrophysiology on self-motion perception

- research on the vestibular system
 - Guldin & Grüsser (1998), Chen et al (2011), Lopez & Blanke (2011) primate studies
 - vestibular cortical system with several processing regions
 - PIVC / VPS / VIP / MST as core part of the vestibular network

Visual – vestibular interactions in visual posterior sylvian area (VPS, VIP)

Multisensory Convergence in Vestibular System

Cullen, K.E. (2018) Oxford Research Ecyclopedia Neuroscience

Multisensory Convergence in Vestibular System

Cullen, K.E. (2018) Oxford Research Ecyclopedia Neuroscience

Vestibular System

A caloric vestibular stimulation (CVS)

Injection of cold (0,4,10,20°C) or warm (44°C) water or gas into the external auditory canal.

Warm water increases firing rate mainly in the afferents of the horizontal semicircular canals. A weaker contribution of vertical canals and an interaction with the neural processing of otolithic signals have been demonstrated.

B galvanic vestibular stimulation (GVS)

Application of a percutaneous current through an anode and a cathode placed on the opposite mastoid processes.

Firing rate increases in the vestibular afferents ipsilateral to the cathode and decreases to the side of the anode.

C sound-induced vestibular stimulation

Presentation of 102 dB clicks (1 ms long, at 1 Hz) or short tone bursts (10 ms long, 500 Hz, at 3 Hz) through headphones.

Air-conducted sounds preferentially activate saccular receptors. A weaker contribution of other otolithic receptors and semicircular canals has also been proposed.

fMRI during Galvanic Vestibular Stimulation

Smith et al., (2012) Cerebral Cortex

Caloric Vestibular Stimulation

Lopez and Blanke 2014 Curr Biol

Frank & Greenlee, 2014 J Neuroscience Methods

Caloric Conditions

Hot Left – Cold Right

Rotation to left

Frank et al. 2014 J Neurophy

Caloric Conditions

Rotation to left

Rotation to right

Frank et al. 2014 J Neurophy

Frank et al. 2014 J Neurophy

Water Circulation vs. No Circulation

Whole Screen Visual Motion

Peripheral Visual Motion

Visual Motion Localizer

Area PIC in Visual Motion

a) Visual Motion vs. Static

Frank et al (2014)

d) Time-Course of Vestibular Response

fMRI Contrast: Caloric > Baseline

N = 25 subjects

Frank & Greenlee 2018

Research Issues

- 1. Inhibition of the vestibular system by visual attention
- 2. Biochemical effects of inhibition by visual attention

Previous Results

- Cross-modal (visual/vestibular) influences activity in the vestibular cortex
 - Brandt, Bartenstein, Janek, Dieterich (1998)
 - Kleinschmidt, Thilo, Büchel, Gresty, Bronstein, Frackowiak (2002)
 - Seemungal, Guzman-Lopez, Arshad, Schultz, Walsh, Yousif (2013)
 - Frank, Baumann, Mattingley, Greenlee (2014)
Attentional Tracking Task

• Pylyshyn & Storm (1988)

Fronto-Parietal Attention Network

PIVC Deactivations

Follow-up Questions

- Visual attention cross-modally influences activity in the vestibular cortex.
- Does visual attention also influence vestibular sensations of self motion?

Visual Attention Suppresses Vestibular Sensations

Visual Attention Suppresses Vestibular Sensations

BOLD Activations during attentive tracking

BOLD Activations during attentive tracking

Follow-up Questions

- Where in the brain does the inhibition by visual attention originate?
- Posterior Parietal Cortex

TMS: Regions of Interest

Frank et al., (2020)

Frank et al., (2020)

Inhibition by Visual Attention

Frank et al., (2020)

Research Issues

- 1. Inhibition of the vestibular system by visual attention
- 2. Biochemical effects of inhibition by visual attention

Hypotheses

Inhibition of PIVC is reflected by:

(1) Decrease of excitatory neurotransmitters(2) Increase of inhibitory neurotransmitters(3) Combination of (1) and (2)

Magnetic Resonance Spectroscopy (MRS)

- Measures spectrum for a single voxel in the brain (2.5 x 2.5 x 2.5 cm)
- <u>PRESS sequence</u>: Concentration of excitatory neurotransmitter (Glutamate + Glutamine = Glx)
- <u>MEGA-PRESS sequence</u>: Concentration of inhibitory neurotransmitter (GABA)
- Resting-based (MRS) or task-based (fMRS)

Example PRESS Spectrum

Example MEGA-PRESS Spectrum

MRS of Vestibular Cortex

PIVC

p < 0.0005

p < 0.05 (FDR)

fMRS in PIVC during:

- low visual attentional load (track-2)
- high visual attentional load (track-4)

Low & High Visual Attentional Loads

N = 20 subjects

Hypotheses

Inhibition of PIVC is reflected by:

(1) Decrease of excitatory neurotransmitters
(2) Increase of inhibitory neurotransmitters
(3) Combination of (1) and (2)

Follow-up Hypothesis

- Decrease of excitatory neurotransmitter in PIVC renders PIVC less responsive to subcortical vestibular cues
- Visual attentional tracking during caloric vestibular stimulation (BOLD fMRI)

Vestibular Cortex

Frank & Greenlee 2018

Thank you for your attention!

Sebastian Frank Maja Pawellek Lisa Forster Wilhelm Malloni

DFG Deutsche Forschungsgemeinschaft

Grant: GR 988 25-1

Martin Schecklmann

Berthold Langguth

Neuronal Effects of Inhibitory rTMS

Neuronal Effects of inhibitory rTMS

Neuronal Effects of inhibitory rTMS

Thank you!

Backup

Frank et al. in press Journal of Neuroscience

P1

Cortical Representation

Guldin & Grüsser 1998 Trends Neurosci

Lopez & Blanke 2011 Brain Res Rev

Cortical Representation

Primates

- •MST (Bremmer et al 1999, Gu et al 2006, 2007, 2008)
- •PIVC (Grüsser et al 1990, Guldin & Grüsser 1998, Chen et al 2010)
- •VIP (Bremmer et al 2002, Klam & Graf 2003, Chen et al 2011)
- •VPS (Guldin & Grüsser 1998, Chen et al 2011)

Humans

- MST (not MT!, Smith et al 2012)
- •PIVC (many indications, see review by Lopez et al 2012)
- •VIP (dorsal IPS) & STS ? (trends in Smith et al 2012)
- •VPS ?

Multisensory areas in human motion-sensitive cortex

Goals

- Design MRI-compatible vestibular stimulation system
- Combine visual and vestibular stimuli
- Vestibular processing in motion-sensitive cortex (MST, STS, VIP, VPS)
- Functional specialization within PIVC complex: role of area PIC

Vestibular stimulation in humans?

Hot

Cold

Baseline (Warm)

Behavioral Results

Functional Sessions

- Localizer: Motion-Cortex
- Localizer: Vestibular Cortex
- Visual-Vestibular Stimulation
- Visual-Temperature Control

Localizer: Motion-Cortex

Go8

QBI Queensland Brain Institute

Vestibular System

- Acceleration and position in space
- Balance
- Sense of gravity
- Self-motion
- Spatial navigation, learning, memory

A caloric vestibular stimulation (CVS)

Injection of cold (0,4,10,20°C) or warm (44°C) water or gas into the external auditory canal.

Warm water increases firing rate mainly in the afferents of the horizontal semicircular canals. A weaker contribution of vertical canals and an interaction with the neural processing of otolithic signals have been demonstrated.

B galvanic vestibular stimulation (GVS)

Application of a percutaneous current through an anode and a cathode placed on the opposite mastoid processes.

Firing rate increases in the vestibular afferents ipsilateral to the cathode and decreases to the side of the anode.

C sound-induced vestibular stimulation

Presentation of 102 dB clicks (1 ms long, at 1 Hz) or short tone bursts (10 ms long, 500 Hz, at 3 Hz) through headphones.

Air-conducted sounds preferentially activate saccular receptors. A weaker contribution of other otolithic receptors and semicircular canals has also been proposed.

Dieterich & Brandt 2008 Brain

Vestibular System

Vestibular Pathway

- Vestibular Sensors
- Vestibular Nuclei
- Ocular Motion Nuclei
- Posterlotateral Thalamus
- Cortex

Cortical representation of vestibular input?

Caloric Stimulation Conditions

Evidence for a Human VPS?

• PIC (posterior insula cortex)

Beer et al. 2009 EJN

Vestibular

Frank et al. 2014 J Neurophy

DFG-funded Projects

- 1. Inhibition of the vestibular system by visual attention
- 2. Biochemical effects of inhibition by visual attention

DFG-funded Projects

- 1. Inhibition of the vestibular system by visual attention
- 2. Biochemical effects of inhibition by visual attention
Vestibular System

Vestibular System

Vestibular System

